Recent studies on pre-ELM structures at JET with applied $n = 2$ magnetic perturbation fields

Yu Gao
Acknowledgements

Y. Gao1, M. Rack1, Y. Liang1, B. Sieglin2, P. Denner1, and JET Contributors*

EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK
1Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik, 52425 Jülich, Germany
2Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany

*See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia

E-mail: y.gao@fz-juelich.de
Background

- Pre-ELM structures have been observed both with and without applied error field correction coils (EFCCs) on JET, giving new input for understanding the triggering mechanism of ELMs.

IR camera resolutions [1]
Spatial: ~ 1.6 mm
Temporal: ~ 10 kHz

Pre-ELM structures W.O MP [2]:
Single cases, not common, less than ~ 10% of ELMs.

Background

• Pre-ELM structures have been observed both with and without applied error field correction coils (EFCCs) on JET, giving new input for understanding the triggering mechanism of ELMs.

Pre-ELM structures W.O MP [3]:
Usually quite short life time.

Pre-ELM structures with MP [3]:
Longer time duration and clearer.

Background

- Thermoelectric current model might predict the appearance of the pre-ELM structures (at one moment) but not their radial propagation [3].

The effect of gas puffing position on recycling

- A period of detachment of strike line appears after each ELM crash phase, which is followed by a large Dα line radiation and particle flux detected by the Langmuir probes. These indicate the large impact from recycling process [4,5] close to the divertor.

These phases disable the observation for the pre-ELM structure on the divertor.

The effect of gas puffing position on recycling

Top gas puffing

- Pre-ELM structure in the whole inter-ELM phase with much less interference from local recycling.
- Consecutive pre-ELM structure could be seen when EFCC current is above \(~ 2.5 \text{ kA}\).
- Different magnetic topology due to different amplitude of perturbation.

EFCC = 2.5 kA

EFCC = 5 kA
The dependence of propagation speed on q_{95}

$q_{95} = \sim 4.82$: Radial Propagation speed increases from $\sim 3.26 \text{ m/s}$ to $\sim 17.29 \text{ m/s}$ while approaching ELM crash phase.

$q_{95} = \sim 5.3$: Radial Propagation speed increases from $\sim 13.23 \text{ m/s}$ to $\sim 36.42 \text{ m/s}$.

With 5 kA $n = 2$ EFCC applied:
- The ELM crash phase lasts more than 2 ms.
- The stripes in the ELM crash phase propagate radially with a speed in the range of 40 to 100 m/s.
The relation with ELM triggering

- Pre-ELM structures may be cut off by unusual weak ELMs or no ELMs at all in the cases with longer inter-ELM periods.
- Pre-ELM structure seem to be connected to the filamentary structures in the ELM crash phase which has larger radial velocity.
Summary and discussion

• Due to the change of gas puffing position, clear pre-ELM structures could be seen through the whole inter-ELM periods with less interference from local recycling.
• Certain threshold (~ 2.5 kA) of EFCC current is needed for the appearance of consecutive pre-ELM structures. Varying amplitude of the perturbation fields changes the footprints of pre-ELM structures.
• With increasing q95, the propagation speed of the pre-ELM structures increase.
• Pre-ELM structures may be cut off by unusual weak ELMs or no ELMs at all in the cases with longer inter-ELM periods.
• The appearance of pre-ELM structures should be related with the enhanced transport at the edge and the change of pedestal stability by magnetic perturbations.
• The radial propagation of pre-ELM structures may be due to the different coupling between external fields and plasma rotation.